E-ISSN: 2321-9637

Some Results On Intuitionistic Fuzzy H_v-subgroups

Arvind Kumar Sinha¹, Manoj Kumar Dewangan²

Department of Mathematics

NIT Raipur, Chhattisgarh, India Email:¹dr_arvindsinha2003@rediffmail.com, ²manoj_rpr76@yahoo.co.in

Abstract-In this paper, we apply the concept of intuitionistic fuzzy set to H_{ν} -groups. The notion of an intuitionistic fuzzy H_{ν} -subgroup of an H_{ν} -group is introduced and some related properties are investigated. Characterizations of intuitionistic fuzzy H_{ν} -subgroups are given.

Mathematics Subject Classification: 20N20

Keywords: H_v-group, H_v-subgroup, fuzzy H_v-group, fuzzy H_v-subgroup, intuitionistic fuzzy H_v-subgroup.

1. Introduction

The concept of hyperstructure was introduced in 1934 by Marty [10]. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [11] introduced the notion of H_{ν} -structures, and Davvaz [5] surveyed the theory of H_{ν} -structures. After the introduction of fuzzy sets by Zadeh [13], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [1] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [2, 3].

In [4] Biswas applied the concept of intuitoinistic fuzzy sets to the theory of groups and studied intuitionistic fuzzy subgroups of a group. In [8] Kim et al. introduced the notion of fuzzy subquasigroups of a quasigroup. In [9] Kim and Jun introduced the concept of fuzzy ideals of a semigroup. B. Davvaz et al. [6] introduced the notion of an intuitionistic fuzzy H_{ν} -submodule of an H_{ν} -module. This paper continues this line of research for fuzzy H_{ν} -subgroup of H_{ν} -group.

The paper is organized as follows: in section 2 some fundamental definitions on H_{ν} -structures and fuzzy sets are explored, in section 3 we define intuitionistic fuzzy H_{ν} -subgroups and establish some useful theorems.

2. Basic Definitions

We first give some basic definitions for proving the further results.

Definition 2.1. [6] Let X be a non-empty set. A mapping $\mu: X \to [0, 1]$ is called a fuzzy set in X.

The complement of μ , denoted by μ^c , is the fuzzy set in X given by

$$\mu^{c}(x) = 1 - \mu(x) \quad \forall x \in X.$$

Definition 2.2. [6] Let f be a mapping from a set X to a set Y. Let μ be a fuzzy set in X and λ be a fuzzy set in Y. Then the inverse image $f^{-1}(\lambda)$ of λ is a fuzzy set in X defined by

$$f^{-1}(\lambda)(x) = \lambda(f(x)) \quad \forall x \in X$$
.

The image $f(\mu)$ of μ is the fuzzy set in Y defined by

$$f(\boldsymbol{\mu})(\boldsymbol{y}) = \begin{cases} \sup_{\boldsymbol{x} \in f^{-1}(\boldsymbol{y})} \boldsymbol{\mu}(\boldsymbol{x}), & f^{-1}(\boldsymbol{y}) \neq \boldsymbol{\phi} \\ 0 & \text{otherwise} \end{cases}$$

For all $y \in Y$.

Definition 2.3. [6] An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{ (x, \mu_A(x), \lambda_A(x)) : x \in X \},\$ where the functions $\mu_A: X \to [0,1]$ and $\lambda_A: X \to [0,1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. We shall use the symbol $A = \{\mu_A, \lambda_A\}$ for the intuitionistic fuzzy set $A = \{ (x, \mu_A(x), \lambda_A(x)) : x \in X \}.$

Definition 2.4. [6] Let $A = \{\mu_A, \lambda_A\}$ and $B = \{\mu_B, \lambda_B\}$ be intuitionistic fuzzy sets in X. Then (1) $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x)$ and $\lambda_A(x) \le \lambda_B(x) \forall x \in X$, (2) $A^c = \{(x, \lambda_A(x), \mu_A(x)) : x \in X\}$, (3) $A \cap B = \{(x, \min\{\mu_A(x), \mu_B(x)\}, \max\{\lambda_A(x), \lambda_B(x)\}) : x \in X\}$, (4) $A \cup B = \{(x, \max\{\mu_A(x), \mu_B(x)\}, \min\{\lambda_A(x), \lambda_B(x)\}) : x \in X\}$,

(5) $\Box A = \{(x, \mu_A(x), \mu_A^c(x)) : x \in X\},\$ (6) $\Diamond A = \{(x, \lambda_A^c(x), \lambda_A(x)) : x \in X\}$

Definition 2.5. [12] Let G be a non-empty set and $*: G \times G \to \mathcal{D}^*(G)$ be a hyperoperation, where $\mathcal{D}^*(G)$ is the set of all the non-empty subsets of G.

Where $A * B = \bigcup_{a \in A, b \in B} a * b, \forall A, B \subseteq G$.

The * is called weak commutative if $x * y \cap y * x \neq \phi$, $\forall x, y \in G$.

The * is called weak associative if $(x * y) * z \cap x * (y * z) \neq \phi$, $\forall x, y, z \in G$.

A hyperstructure (G, *) is called an H_v-group if

(i) * is weak associative.

(ii) a * G = G * a = G, $\forall a \in G$ (Reproduction axiom).

Definition 2.6. [7] Let G be a hypergroup (or H_{ν} group) and let μ be a fuzzy subset of G. Then μ is said to be a fuzzy subhypergroup (or fuzzy H_{ν} subgroup) of G if the following axioms hold:

(*i*) min{ $\mu(x), \mu(y)$ } $\leq \inf_{\alpha \in x^* y} \{\mu(\alpha)\}, \quad \forall x, y \in G$

(*ii*) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\min\{\mu(a), \mu(x)\} \leq \{\mu(y)\}.$

3. Intuitionistic fuzzy H_v-subgroup

In this section we give the definition of intuitionistic fuzzy H_{ν} -subgroup and prove some related results.

Definition 3.1. Let *G* be a hypergroup (or H_{ν} -group). An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ of *G* is called intuitionistic fuzzy subhypergroup (or intuitionistic fuzzy H_{ν} -subgroup) of *G* if the following axioms hold:

(*i*) min{ $\mu_A(x), \mu_A(y)$ } \leq inf{ $\mu_A(z) : z \in x \cdot y$ }, (*ii*) For all $x, a \in G$ there exists $y \in G$ such that $x \in a \cdot y$ and min{ $\mu_A(a), \mu_A(x)$ } \leq { $\mu_A(y)$ } (*iii*) sup{ $\lambda_A(z) : z \in x \cdot y$ } \leq max{ $\lambda_A(x), \lambda_A(y)$ }, (*iv*) For all $x, a \in G$ there exists $y \in G$ such that $x \in a \cdot y$ and { $\lambda_A(y)$ } \leq max{ $\lambda_A(a), \lambda_A(x)$ }

Lemma 3.2. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_v -subgroup of G, then so is $\Box A = \{\mu_A, \mu_A^c\}$.

Proof. It is sufficient to show that μ^c_A satisfies the conditions (iii) and (iv) of Definition 3.1. For $x, y \in G$ we have

 $\min\{\mu_A(x),\mu_A(y)\} \le \inf\{\mu_A(z): z \in x \cdot y\}$ and so $\min\{1-\mu_{A}^{c}(x), 1-\mu_{A}^{c}(y)\} \le \inf\{1-\mu_{A}^{c}(z): z \in x \cdot y\}$ Hence $\min\{1-\mu_{A}^{c}(x), 1-\mu_{A}^{c}(y)\} \le 1-\sup\{\mu_{A}^{c}(z): z \in x \cdot y\}$ Which implies $\sup \{\mu_{A}^{c}(z) : z \in x \cdot y\} \leq 1 - \min \{1 - \mu_{A}^{c}(x), 1 - \mu_{A}^{c}(y)\}$ Therefore $\sup \{\mu_A^c(z) : z \in x \cdot y\} \le \max \{\mu_A^c(x), \mu_A^c(y)\}$ And thus the condition (iii) of Definition 3.1 is valid. Now, let $a, x \in G$. Then there exist $y \in G$ such that $x \in a \cdot y$ and $\min\left\{\mu_{A}(a),\mu_{A}(x)\right\} \leq \left\{\mu_{A}(y)\right\}$ It follows that $\min\{1-\mu_{A}^{c}(a),1-\mu_{A}^{c}(x)\}\leq\{1-\mu_{A}^{c}(y)\}$ $\mu_{A}^{c}(y) \leq 1 - \min\left\{1 - \mu_{A}^{c}(a), 1 - \mu_{A}^{c}(x)\right\}$

So that

$$\left\{\mu_{A}^{c}(y)\right\} \leq \max\left\{\mu_{A}^{c}(a), \mu_{A}^{c}(x)\right\}$$

Hence the condition (iv) of Definition 3.1 is satisfied.

Lemma 3.3. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_v -subgroup of G, then so is $\Diamond A = \{\lambda_A^c, \lambda_A\}$.

Proof. The proof is similar to the proof of Theorem 3.2.

Combining the above two lemmas it is not difficult to verify that the following theorem is valid. $\forall x, y \in G$

Theorem 3.4. $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_v -subgroup of G if and only if $\forall A$ and $\notin QA$ are intuitionistic fuzzy H_v -subgroup of G.

Corollary 3.5. $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_v -subgroup of G if and only if μ_A and λ_A^c are intuitionistic fuzzy H_v -subgroup of G.

Definition 3.6. For any $t \in [0,1]$ and a fuzzy set μ in *G*, the set $U(\mu; t) = \{x \in G : \mu(x) \ge t\}$ and $L(\mu; t) = \{x \in G : \mu(x) \le t\}$ is called an upper and lower *t*-level cut of μ .

Theorem 3.7. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_v -subgroup of G, then the sets $U(\mu_A; t)$ and $L(\lambda_A; t)$ are H_v -subgroup of G for every $t \in \operatorname{Im}(\mu_A) \cap \operatorname{Im}(\lambda_A)$.

Proof. Let
$$t \in \operatorname{Im}(\mu_A) \cap \operatorname{Im}(\lambda_A) \subseteq [0,1]$$
 and let $x, y \in U(\mu_A; t)$.

Then $\mu_A(x) \ge t$ and $\mu_A(y) \ge t$ and so $\min \{\mu_A(x), \mu_A(y)\} \ge t$.

It follows from the condition (i) of Definition 3.1 that $\inf \left\{ \mu_A(z) : z \in x \cdot y \right\} \ge t.$

Therefore $z \in U(\mu_A; t)$ for all $z \in x \cdot y$ and so $x \cdot y \in U(\mu_{A};t).$ Hence $a \cdot U(\mu_A; t) \subseteq U(\mu_A; t)$ and $U(\mu_{A};t) \cdot a \subseteq U(\mu_{A};t)$ for all $a \in U(\mu_{A};t)$. Now, let $x \in U(\mu_A; t)$. Then there exist $y \in G$ such that $x \in a \cdot y$ and $\min\{\mu_{A}(x), \mu_{A}(a)\} \le \min\{\mu_{A}(y)\}.$ Since $x, a \in U(\mu_A; t)$, we have $t \leq \min \{\mu_A(x), \mu_A(a)\}$ and so $t \leq \min \{\mu_A(y)\}$, which implies $y \in U(\mu_A; t)$. This proves that $U(\mu_A;t) \subseteq a \cdot U(\mu_A;t)$ and $U(\mu_{A};t) \subseteq U(\mu_{A};t) \cdot a.$ If $x, y \in L(\lambda_{A}; t)$, then $\max\left\{\lambda_{A}(x),\lambda_{A}(y)\right\} \leq t.$ It follows from the condition (iii) of Definition 3.1 that $\sup \{\lambda_A(z) : z \in x \cdot y\} \leq t$.

Therefore for all $z \in x \cdot y$ we have $z \in L(\lambda_A; t)$, so $x \cdot y \subseteq L(\lambda_A; t)$. Hence for all $a \in L(\lambda_A; t)$ we have $a \cdot L(\lambda_A; t) \subseteq L(\lambda_A; t)$ and $L(\lambda_A; t) \cdot a \subseteq L(\lambda_A; t)$. Now, let $x \in L(\lambda_A; t)$. Then there exist $y \in G$ such that $x \in a \cdot y$ and $\max \{\lambda_A(y)\} \le \max \{\lambda_A(a), \lambda_A(x)\}$. Since $x, a \in L(\lambda_A; t)$, we have $\max \{\lambda_A(a), \lambda_A(x)\} \le t$

and so

$$\max\left\{\lambda_{A}\left(y\right)\right\} \leq t$$

Thus

$$y \in L(\lambda_A; t)$$

Hence

And

$$L(\lambda_A;t) \subseteq L(\lambda_A;t) \cdot a$$

 $L(\lambda_{A};t) \subseteq a \cdot L(\lambda_{A};t)$

Theorem 3.8. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy set in *G* such that all non empty level sets $U(\mu_A; t)$ and $L(\lambda_A; t)$ are H_v -subgroup of *G*, then $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_v -subgroup of *G*.

Proof. Assume that all non empty level sets $U(\mu_A; t)$ and $L(\lambda_A; t)$ are H_v -subgroup of G. If $t_0 = \min \{\mu_A(x), \mu_A(y)\}$ and $t_1 = \max \{\lambda_A(x), \lambda_A(y)\}$ for $x, y \in G$, then $x, y \in U(\mu_A; t_0)$ and $x, y \in L(\lambda_A; t_1)$. So $x \cdot y \subseteq U(\mu_A; t_0)$ and $x \cdot y \subseteq L(\lambda_A; t_1)$. Therefore for all $z \in x \cdot y$ we have $\mu_A(z) \ge t_0$ and $\lambda_A(z) \le t_1$, that is, $\inf \{\mu_A(z): z \in x \cdot y\} \ge \min \{\mu_A(x), \mu_A(y)\}$ And $\sup \{\lambda_A(z): z \in x \cdot y\} \le \max \{\lambda_A(x), \lambda_A(y)\}$ Which verify the conditions (i) and (iii) of Definition 3.1.

Now, If $t_2 = \min \{ \mu_A(a), \mu_A(x) \}$ for $x, a \in G$, then $a, x \in U(\mu_A; t_2)$. So there exist $y_1 \in U(\mu_A; t_2)$ such that $x \in a \cdot y_1$. Also we

have $t_2 \leq \min \{ \mu_A(y_1) \}$. Therefore the condition (ii) of Definition 3.1 is verified. If we put $t_3 = \max \{ \lambda_A(a), \lambda_A(x) \}$ then and $a, x \in L(\lambda_A; t_3)$. So there exist $y_2 \in L(\lambda_A; t_3)$ such that $x \in a \cdot y_2$ and we have $\max \{ \lambda_A(y_2) \} \leq t_3$, and so the condition (iv) of Definition 3.1 is verified. This completes the proof.

Corollary 3.9. Let *H* be an H_{ν} -subgroup of an H_{ν} -group *G*. If fuzzy sets μ and λ are defined by $\mu(x) = \begin{cases} \alpha_{0}, & x \in H \\ \alpha_{1}, & x \in G \setminus H \end{cases}$, $\lambda(x) = \begin{cases} \beta_{0}, & x \in H \\ \beta_{1}, & x \in G \setminus H \end{cases}$ Where $0 \le \alpha_{1} < \alpha_{0}, 0 \le \beta_{0} < \beta$ and $\alpha_{i} + \beta_{i} \le 1$ for i = 0, 1. Then $A = \{\mu, \lambda\}$ is an intuitionistic fuzzy H_{ν} -subgroup of *G* and $U(\mu; \alpha_{0}) = L(\lambda; \beta_{0})$.

Corrollary 3.10. Let χ_H be the characteristic function of an H_v -subgroup H of G. Then $A = (\chi_H, \chi_H^c)$ is an intuitionistic fuzzy H_v -subgroup of G.

Theorem 3.11. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy H_v -subgroup of G, then $\mu_A(x) = \sup\{\alpha \in [0,1] : x \in U(\mu_A; \alpha)\}$ And $\lambda_A(x) = \inf\{\alpha \in [0,1] : x \in L(\lambda_A; \alpha)\}$ For all $x \in G$.

Proof Let $\delta = \sup \{ \alpha \in [0,1] : x \in U(\mu_A; \alpha) \}$ and let $\varepsilon > 0$ be given. Then $\delta - \varepsilon < \alpha$ for some $\alpha \in [0,1]$ such that $x \in U(\mu_A; \alpha)$. This means that $\delta - \varepsilon < \mu_A(x)$ so that $\delta \le \mu_A(x)$ since ε is arbitrary. We now show that $\mu_A(x) \le \delta$. If $\mu_A(x) = \beta$, then $x \in U(\mu_A; \beta)$ and so $\beta \in \{ \alpha \in [0,1] : x \in U(\mu_A; \alpha) \}$ Hence $\mu_A(x) = \beta \le \sup \{ \alpha \in [0,1] : x \in U(\mu_A; \alpha) \} = \delta$

Therefore

 $\mu_A(x) = \delta = \sup \left\{ \alpha \in [0,1] : x \in U(\mu_A; \alpha) \right\}$ Now let $\eta = \inf \left\{ \alpha \in [0,1] : x \in L(\lambda_A; \alpha) \right\}.$ Then $\inf \left\{ \alpha \in [0,1] : x \in L(\lambda_A; \alpha) \right\} < \eta + \varepsilon$ for any $\varepsilon > 0$ and so $\alpha < \eta + \varepsilon$ for some $\alpha \in [0,1]$ with $x \in L(\lambda_A; \alpha)$. Since $\lambda_A(x) \le \alpha$ and ε is arbitrary, it follows that $\lambda_A(x) \le \eta$.
To prove $\lambda_A(x) \ge \eta$, let $\lambda_A(x) = \xi$. Then $x \in L(\lambda_A; \xi)$ and thus $\xi \in \left\{ \alpha \in [0,1] : x \in L(\lambda_A; \alpha) \right\}.$ Hence $\inf \left\{ \alpha \in [0,1] : x \in L(\lambda_A; \alpha) \right\} \le \xi$ i.e. $\eta \le \xi = \lambda_A(x).$ Consequently $\lambda_A(x) = \eta = \inf \left\{ \alpha \in [0,1] : x \in L(\lambda_A; \alpha) \right\}$

Which completes the proof.

References

- Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [2] Atanassov K. T., Intuitionistic fuzzy sets: Theory and Applications, Studies in fuzziness and soft computing, 35, Heidelberg, New York, Physica-Verl., 1999.
- [3] Atanassov K. T., New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, (1994) 137-142.
- [4] Biswas R., Intuitionistic fuzzy subgroups, Math. Forum 10 (1989) 37-46.
- [5] Davvaz B., A brief survey of the theory of H_{ν} structures, in: Proceedings of the 8th International Congress on AHA, Greece 2002, Spanids Press, 2003, pp. 39-70.
- [6] Davvaz B., Dudek W. A., Jun Y. B., Intuitionistic fuzzy H_{ν} -submodules, Inform. Sci. 176 (2006) 285-300.
- [7] Davvaz B., Fuzzy H_{ν} -groups, Fuzzy Sets and Systems 101 (1999) 191-195.
- [8] Kim K. H., Dudek W. A., Jun Y. B., On intuitionistic fuzzy subquasigroups of quasigroups, Quasigroups Relat Syst 7 (2000) 15-28.
- [9] Kim K. H., Jun Y. B., Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33 (4) (2002) 443-449.
- [10] Marty F., Sur une generalization de la notion de group, in: 8th congress Math.Skandenaves, Stockholm, 1934, pp. 45-49.
- [11] Vougiouklis T., A new class of hyperstructures, J. Combin. Inf. System Sci., to appear.

311

E-ISSN: 2321-9637

- [12] Vougiouklis T., Hyperstructures and their representations, Hadronic Press, Florida, 1994.
- [13] Zadeh L. A., Fuzzy sets, Inform. And Control 8 (1965) 338-353.